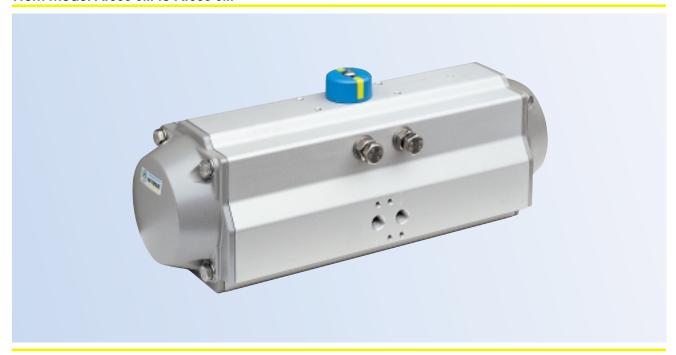


Head office and Works:
AIR TORQUE
Via Palazzo - 24061 Albano S.A. (BG) Italy
Tel.: +39 035 582277 - Fax: +39 035 580164
E-mail: info@airtorque.it
Internet: www.airtorque.it


180° SPRING RETURN ACTUATOR 4thG

AIR TORQUE 180° spring return actuator 4th Generation provides a rotation of 180° and in case of air or electric failure the closing is provided by the spring return operation.

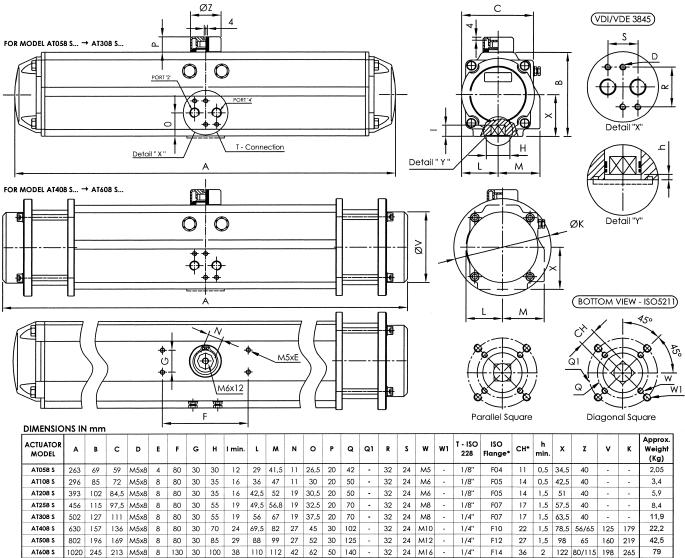
The external travel stop is available as a standard in fully open position (180°) and in fully close position (0°), and it is easily and precisely adjustable of \pm 0° in both directions.

Fields of application: 3 or 4 way valves, special valves for sample taking and any applications where a 180° rotation is required.

From model AT058 S... to AT308 S...

From model AT408 S... to AT608 S...

When ordering 180° Rotation Spring Return Actuator add **"8"** and **"S + number of springs"** (Ex. AT 30**8 S22** A F07 17) to the standard 180° rotation actuator code.


Head office and Works: AIR TORQUE

Via Palazzo - 24061 Albano S.A. (BG) Italy Tel.: +39 035 582277 - Fax: +39 035 580164

E-mail: info@airtorque.it Internet: www.airtorque.it

^{*}Notes: Other connections available.

								SPRII	NG RET	URN T	ORQUI	RATIN	IGS IN	Nm										Spri	ing
Supply Pressure:		2,5 Bar		3 Bar		3,5 Bar		4 Bar		4,2 Bar		4,5 Bar		5 Bar		5,5 Bar		6 Bar		7 Bar		8 Bar		stroke	
Actuator	Spring	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	0°	180°	180°	0
Model*	Set**	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	End	Start	Er
AT058 S	S 12	4,3	2,5	5,9	4,1	7,6	5,8	9,3	7,4	9,9	8,1	10,9	9,1	12,6	10,8	14,2	12,4							5.8	
	S 16					6,2	3,8	7,9	5,5	8,6	6,2	9,6	7,2	11,2	8,8	12,9	10,5	14,6	12,1	17,9	15,5			7,8	5
	S 20											8,2	5,2	9,9	6,9	11,5	8,5	13,2	10,2	16,5	13,5	19,8	16,8	9,7	6
	S 24															10,2	6,6	11,9	8,2	15,2	11,6	18,5	14,9	11,7	8
AT108 S	S 12	8	4,5	10,9	7,5	13,9	10,4	16,8	13,3	18	14,5	19,7	16,3	22,7	19,2	25,6	22,1							10,1	- (
	S 16					11,6	7	14,6	10	15,7	11,1	17,5	12,9	20,4	15,8	23,4	18,7	26,3	21,7	32,2	27,5			13,5	
	S 20											15,3	9,5	18,2	12,4	21,1	15,4	24,1	18,3	29,9	24,2	35,8	30	16,9	_1
	S 24															18,9	12	21,9	14,9	27,7	20,8	33,6	26,7	20,2	_1
AT208 S	S 12	15,8	8,3	21,6	14,1	27,5	19,9	33,3	25,8	35,6	28,1	39,1	31,6	44,9	37,4	50,7	43,2							20,8	_1
	S 16					23	13	28,8	18,8	31,2	21,2	34,7	24,7	40,5	30,5	46,3	36,3	52,1	42,1	63,7	53,7			27,7	1
	S 20											30,2	17,7	36,1	23,6	41,9	29,4	47,7	35,2	59,3	46,8	71	58,5	34,6	2
	S 24											10.1				37,5	22,4	43,3	28,3	54,9	39,9	66,5	51,5	41,5	_2
AT258 S	S 12	23,8	11,1	32,9	20,3	42,1	29,4	51,2	38,6	54,9	42,2	60,4	47,7	69,5	56,9	78,7	66,0							34,7	:
	S 16					34,7	17,9	43,9	27	47,5	30,7	53,0	36,2	62,2	45,3	71,3	54,5	80,5	63,6	98,8	81,9	1000		46,2	2
	S 20 S 24											45,7	24,6	54,8	33,8	64,0	42,9	73,1	52,1	91,5	70,4	109,8	89	57,8	3
	S 12	36.1	19.2	49.4	32.5	62.7	45.8	76	59.1	81.3	64.4	89.3	72.4	103	85.7	56,7 116	31 99	65,8	40,5	84,1	58,8	102,4	77,1	69,3	
AT308 S	S 16	36,1	17,2	47,4	32,5	52.5	30	65.8	43.3	71.1	48.7	79.1	56,6	92,4	69,9	106	83,2	119	96.5	146	123			47,3 63	3
	S 20					32,3	30	65,6	43,3	/1,1	40,7	69	40,9	82,3	54,2	95,6	67,5	109	80,8	135	107	162	134	78,8	4 5
	S 24											07	40,7	62,3	34,2	85.4	51.7	98.7	65	125	92	152	118	94.5	- 6
	S 12	75.5	39.6	103.2	67.3	131	95	159	123	170	134	186	150	214	178	242	206	70,7	- 65	123	- 72	132	110	99	- 0
AT 408 S	S 16	70,0	37,0	100,2	0,,0	110	62	137.6	89.7	149	101	165	117	193	145	221	173	248	201	304	256			132	-
	\$ 20					110	- 02	107,0	07,7	1.77		144	84,5	172	112	200	140	227	168	283	223	338	278	165	1
	S 24												01,0			179	107	206	135	262	190	317	245	198	i
AT 508 S	S 12	149	84,3	206	141	262	198	319	255	342	277	376	311	433	368	489	425			202	170	017	240	199	i
	S 16		,,			218	131	274	188	297	211	331	245	388	302	444	358	501	415	615	528			266	i
	S 20											286	178	343	235	400	292	456	349	570	462	683	575	332	2
	S 24															355	225	411	282	525	396	638	509	399	2
AT 608 S	S 12	277	154	383	260	489	367	596	473	638	515	702	579	808	686	915	792							378	2
	S 16					404	241	511	347	553	390	617	453	723	560	830	666	936	772	1149	985			504	3
	S 20											532	327	638	434	745	540	851	646	1064	859	1277	1072	630	- 4
	S 24															660	414	766	520	979	733	1192	946	756	

Notes: * Other models available

 $^{^{**}}$ It is possible to obtain different torque values by interpolation of spring number (ex. S14)